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Bright and dark optical solitons in coupled higher-order 
nonIinear Schrodinger equations through singularity 
structure analysis 

R Radhakrishnan, M Lakshmanan and M Daniel 
CenVe for Nonlinear Dynamics, Department of Physics, Bharathidasan University, 
liruchirapalli-620 074. India 

Received 22 February 1995, in final form 5 July 1995 

Abstract A fairly genenl form of coupled higher-order nonlinear S c M i n g e r  (~~NLs) 
equations, which includes the effect of group velocity dispersion (OVD), third-order dispersion, 
Kerr-law nonlinwity and describing a large class of phenomena involving soliton interactions, 
has been investigated using Painlev6 (P) singularity structure analysis in order to identify the 
underlying integrable models. me identified integrable models agree well with those obtained 
from AKNS formulation. In addition, we explicitly obtain the bright and dark N-soliton solutions 
for the integrable model by using Hirota biliearization derivable from the P-analysis. The form 
of the bright one-soliton agrees with the result derivable from the inverse scattering analysis, 
while that of the remaining higher-order bright solitons and dark N-solitons are reported for the 
first time, by including the most general h e m  coupling terms. 

1. Introduction 

The propagation of optical soliton pulses throfigh a fibre medium is governed by the 
nonlinear Schrodinger (NLS) family of equations, including their higher-order and coupled 
versions depending upon the physical situation that is being modelled [1,2]. The NLs 
equation has two types of soliton solution, namely bright and dark soliton solutions. While 
the former can exist in the anomalous GVD region [3] where the dispersion and the cubic 
nonlinear coefficients have identical signs (that is, the product of these two coefficients is 
greater than zero), the latter can occur in the normal GVD region [4] where those two 
coefficients take opposite signs (that is, the product of dispersion and cubic nonlinear 
coefficients is less than zero). Zakharov and Shabat [5] solved exactly the NLS equation 
by means of the inverse scattering method and noted pulse-like envelope soliton solutions 
in the anomalous GVD region and, in the case of the normal GVD region, soliton solutions 
appear in the form of a dip against a uniform background [6]. The former ones are the bright 
solitons and the latter ones are the dark solitons. Recently the theoretical and experimental 
aspects of the dark solitons have been reviewed by Kivshar [7]. 

The role of a set of coupled NLS family of equations becomes quite important to explain 
the interaction of optical solitons in a two-mode fibre [8-101, birefringent fibre [II-131, 
directional coupler [14-161, etc. One such a fairly general form of coupled higher-order 
nonlinear Schrodinger (CHNLS) equations is the generalized version of the~higher-order NLS 
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equation 1171, 

iql, + ipiqlt + p t t  + 4 l q i  I' + r11qz12)q1 + (U+ + U-)ql+ (K+ + iK-)qZ 

iqk + i p m r  + p z t t  + a~(r11qi1~ + Iqz12)q2 + (U+ - u-)qz + (K+ - iK-)ql 

A 

-iE[qlrtr + ~ Q ( I ~ , I ~  + v1qz12)q11 + aa(q;qll + q&dq11= o 

-i4quil +aQ(r11q1I2+ 1qzlZ)qu + W q d q i r  +q;&)qd = O  

( 1 . 1 ~ )  
A 

(1.16) 

where pi,  pz, U+, a-, K+, K-, q, a, A, Q and E are real parameters, the variables z and t 
are the normalized distance and time along the fibre respectively and qj(z,  t ) ,  j = 1,2  are 
the normalized envelopes of the two modes. Here the parameter E approaches the value 
zero if the pulse width is long compared to the wavelength and the bright and dark soliton 
solutions of the resultant coupled NLS equations have been recently constructed [I81 by 
deriving the corresponding Hirota bilinear form from the results of Painlev.4 (P) analysis in 
the absence of linear cross coupling terms K+ = K- = 0. The parameter a can take both 
positive and negative values depending on whether bright or dark solitons are present in 
the system respectively. For a = 1, Tasgal and Potasek [17], using the inverse scattering 
method, explicitly derived a bright one+oliton solution of the system (1.1) for the parametric 
restrictions Q = 3, p1 = pz and q = 1. They also briefly reviewed the roleof the parameters 
pi ,  pz, U+, a-, IC+, K - ,  E and q corresponding to the different physical situations that are 
being modelled from the previous soliton works. It appears that up to this date there has 
been no systematic work to find bright and dark N-soliton solutions of the CHNLS equations 
by including the most general linea cross coupling terms K+, K - .  

In this paper, we find explicitly bright and dark N-soliton solutions of the underlying 
integrable model of the system (1.1) using the relation between P-analysis and Hirota 
technique. The plan of the paper is as follows. In section 2, in order to identify the 
underlying integrable models of the system (l.l), we apply P-analysis and note that the 
identified integrable model, which is the same as obtained by Tasgal and Potasek [17] from 
AKNS formulation, does not have any restriction on the parameters U+, U-, K+, K-, a, A and 
E as such. In section 3, we derive explicitly the bright and dark N-soliton solutions of the 
integrable model using a Hirota bilinear transformation derivable from the P-analysis. It is, 
also verified in this section that the briiht one-soliton obtained here exhibits the same form 
as that reported from the inverse scattering method [17], and that the remaining higher-order 
bright and dark solitons are reported here by including the higher-order terms and the most 
general linear coupling terms systematically, for the first time. Section 4 is devoted to a 
discussion of the results. 

2. Painlevc? singularity structure analysis of the CHNLS equations 

In recent years, the Painlev.4 singularity structure analysis has been identified as one of the 
powerful tools in the search for new integrable systems [19,20]. The remarkable feature of 
this analysis, particularly for soliton equations, is that a natural connection exists in relation 
to the Lax pair, Backlund transformation (ET) and Hirota method. Therefore, investigating 
the underlying integrable models of the coupled soliton equations by means of this analysis 
is quite interesting 121,221 and in this'section we perform the singular point analysis for 
the cHNLS equations (1.1). 
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2.1. Leading order and resonance analysis 

In order to apply the P-analysis, we define qr = a, q; = b, qz = c, q; = d and rewrite 
(1.1) and its complex conjugate (after a rescaling of q1 and q 2  by a factor I,'&) as 

A 
2 ia, + ipla, + -U,? + A(ub + qcd)a + (U+ t u-1~ + (K+ + iK-)c 

-k[atrr + G(ab + qcd)a, + Q(atb + qctd)a] = 0 (2.14 
A 
2 

-ib, - iplb, + -bLf + A(ab + qcd)b + (U+ + u-)b + (K+ - iK-)d 

+ie[blli + Q(ab + qcd)b, + Q(ab, + &d,)bl = 0 (2.lb) 
A. 
2 

ic, ~+ ipzc, + -c,, + A(qUb + cd)c + (U+ - U-)c + (K+ - iK-)a 

-ie[c,,, + Q(qab + cd)c, + Q(qa,b + c,d)c] = 0 (2.14 
A 
2 -id, - ipzd, t -d,* + A(qab + cd)d + (U+ + u-)d + (K+ + iK-)b 

+is[d,,, + Q ( w b  + cd)d, + Q(qabr + cd,)dl = 0. (2.14 
The singularity structure analysis of (2:l) is carried out by seeking the generalized Laurent 
expansions in the form 

(2.24 

(2.2b) 

(2.2c) 

(2.24 

in the neighbourhood of.the non-characteristic singular manifold @(t, t )  = 0 (&, @, # 0) 
and searching for the conditions under which the solution is free from movable critical 
manifolds. 

Assuming the leading order of the solutions in the form 
U N ao@" b Y bod' c N CO@' d 2: do@' (2.3) 

we substitute (2.3) in (2.1) and determine the exponents p. q, r, s and the coefficients 
ao, bo, CO, do by balancing the dominant terms. In order to simplify the calculations, we 
make use~of the Kruskal ansatz [23] @ ( z ,  t) = @ ( z )  + t ,  where + is an arbitrary analytic 
function o f t .  Then the coefficient functions ai,~b,, cL and di in (2.2) will be a function of 
z alone. It may be noted that the dominant terms are all those terms which are proportional 
to E in equations (2.1) and on balancing them, we obtain 

p i - q = - 2  r + s = . - 2  (2.4~)  
(2.4b) 
(2.4~) 

(2.46) 
S(S - l)(s - 2) + 2Qcodos + Gqaobo(q + S )  = 0. (2.4e) 

Requiring that the leading order exponents be integers only for the P-property to hold, one 
easily obtains from equations (2.4) the following three possibilities. 
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Case I: 
p = q  = r  = s  = -1 ( 2 . 5 ~ )  

-3 
aobo + ~ C O &  = . (2.56) 

-3 
Wobo + cod0 = - (2.5~) R 

Case II: 
p = r = - 2  q = ~ s = O  (2.6u) 

-6 
&bo + ~ ~ o d o  = - (2.6b) R 

( 2 . 6 ~ )  

( 2 . 7 ~ )  

(2.7b) 

(2.7~) 
Next, in order to find the resonances, that is the powers at which the arbitrary functions 

-6 
aobo + qcodo = - R 

-6 
?%bo + cod0 = -. 

Q 

enter into the generalized Laurent expansions (2.2), we expand 
a = aogp + . . . + u.+P+j J 

c = CO+‘ + . . . + c j q + l  

(2.W 

(2.8c) 
d = + . . . +d . f l+ j  1 (2.84 

b = bo@ + . . . + bj@j (2.8b) 

and use them in (2.1). Detailed calculations give the following resonance equations for the 
exponent j :  

j2(j2 - l ) ( j  - 3)(j - 4)’U -5)[q2(j4 - 8 j 3  + 2 6 j Z  -40j +33)+2q(j4 - 8 j 3  
(Leading order) case I:  

+20j2 - 16j - 9) + (j4 - 8 j 3  + 14j2 + 8 j  - 15)] = 0. 

x[$(j2 - 3 j  + 2 )  +q(2j2 - 6 j  - 8) + ( j 2 -  3 j  - lO)]=O. 

(2.9) 

j 2 ( j  + l)(j+Z)(j -4)’(j -5)(j  -6)[rlz(j2 -5j + 6)+q(2 j2  - lOj) + (j2 - 5 j  -6)J 
(2.10) 

Considering case I, equation (2.9) gives 12 resonances, out of which eight are integers 
namely, -1,O. 0, 1 ,3 ,4 ,4 ,5  and the remaining four are non-integersfcomplex in general. 
However, the roots of the quartic equation for j in the equation (2.9) can become integer 
for the following three specific values of the parameter 9.  namely q = 0. 1,2. The 
corresponding integer resonance values are given in table 1. 

Similarly considering cases II and III, we find that (2.10) admits eight integer 
resonances, namely -2, - 1 , O , O ,  4,4,5,6,  besides four non-integer or complex resonances, 
I(5/2) * (1/2)th + 49)’/2(rl + 1)”211. ((3/2) * (1/2)[(v + 49)% + l)’nl}. However, 
the latter four resonances become integers for the two values q = 0 and q = 1 only, while 
they are again non-integers for the parameter q = 2. Their explicit vaIues are also given in 
table 1. 

Thus from the resonance analysis, we infer that starting from thc three leading order 
cases 1, II and III, and searching for integer resonances in the Laurent expansions (2.8), 

(Leading order) cases II and IN: 
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Tahle 1. The leading order behaviour and the resonances for the different (leading order) cases. 

Leading order behaviour 
(Leading order) Resonances 

~ ~~ ~~~ ~~~~ 

?-value uses p ,  y, r, s nu, bo. CO, do (j) 

0 I p = q = r = s = - 1  qbii =cod1 = -3/R -1. -1 ,O ,O,  I ,  1,3,3.4.4.5.5 

wbii = qido = -6/Q -2. -2. -1, -1.0.0.4.4.5,5,6,6 I 
p = I  = 0 , y  = s  = -2) 

I1 
I11 

p = I  = -2.y =s = o  
p = ). = 0,y = s = -2 

p = I = -2. y =s = 0 
1 I p = y = r = . ~ = - - I  uobo+codil=-3/R -1,0.0.0.1.2.2,3,4,4.4,5 

qibii+ciidu=-6/Q -2,-1,-1,0,0,0,4,4,4,5,5,6 II 
Ill 

qlbii+Zciido = -3/R, - 1 , O . O .  I ,  1,1,3,3,3,4,4,5 p = y = r = s = - I  
hobu + cudu = ;3/ R 

p = I  = -2,q = s  = 0 aebu+Zs~4~  = -610, -2,-I. 0.0.4.4.5.6, 
p = r = 0, y = s = -2 kobu +cod" = -6/R ~ ( 3  f 4 7 ) / 2 ,  (5 f n)/2 

2 , I  

I1 
Ill 

only for two parametric choices namely 7 = 0 and q = 1, all the three cases admit integer 
resonances, and so the corresponding parametric choices are possible candidates to satisfy 
the P-property. It is interesting to note that for the parameiric choice 7 = 2, even though 
the system admits real integer resonances in the (leading order) case I Laurent, expansion, 
it shows the presence of a movable branch point type manifold due to the presence of the 

-resonances (33tz/iT) f2 and (5&m)/2 in cases I1 and UI. So this parametric choice does 
not satisfy the P-property and so the corresponding system is non-integrable. 

Now considering the~parametric choices 7 = 0 and 7 = 1, the resonances are seen from 
table 1 to~be  as follows. 

q = Q  

Case1  j =  - l , - l , O , O ,  1,  1,3,3,4,4,5,5 (2.1 1) 
Cases IHII j = -2, -2, -1, -1,O, 0,4,4,5,5,6,6 (2.12) 

Case I: j = -1.0,0,0, 1 ,2 ,2 ,3 .4,4,4,5 (2.13) 
Cases WIIk j = -2, -1, -1,0,0,0,4,4;4,5,5,6. (2.14) 

In order that the P-property is satisfied for these cases, we have to now ensure that sufficient 
number of arbitrary functions exist at the appropriate resonance values in all the cases I and 
IIlIII separately for the parametric choices q = 1 and q = 0. 

2.2. Arbitraryfunctions for the parametric choice q = 1 

Considering the leading order case I for the parametric choice 7 = 1, we now discuss briefly 
the search for~arbitrary functions at the resonance values j = -1,O, 0, 0, 1,2,2,3,4,4,4,5.  
Obviously j = -1 corresponds to the arbitrariness of the singular manifold. From the 
leading order results of equations (2.5b, c)  it is also clear that for 7 = 1 the four functions 
ao, bo, CO, do are connected by the only relation 

aobo + cod0 =(-3/Q) (2.15) 

ensuring that three of them are arbitrary. This agrees with the resonance values j = 0, 0, 0. 
Proceeding further, we substitute the Laurent series solutions (2.2) in (2.1) and collect 

the coefficients of different .powers of 6, so that we can evaluate the further coefficients. 

7 = 1: 
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By collecting the coefficients of (4-3, 4-3, 4-3, 4-3), we get 

Using (2.15) in (2.16), we obtain 
coal - aocl = boal -I- aobl = dobl - bodl = 0 

A = O  or a==. 
along with the additional parametric restriction 

(2.17) 

(2.18) 
From (2.17) it is clear that one of the four functions a ] ,  bl, c], d, is arbitrary provided the 
additional parametric restriction (2.18) is also satisfied in addition to q = 1, which agrees 
with the resonance value j = 1. Similarly from the coefficients of (@-', 4-', #-', $-'), we 
see that among the four functions az, bz, CZ.  d? two are arbitrary for both A = 0 or S2 = 3 
and PI  = pz = p ,  which is in agreement with the resonance values j = 2,2. In this way by 
proceeding further and collecting the coefficients of (@-I, @-I, 4-', &I), (6'. @', q5O, 4') 
and (&I ,  + I ,  @ I ,  @ I ) ,  we establish the required number of arbitrary functions corresponding 
to the resonance values j = 3, j = 4,4,4 and j = 5 without any additional restrictions on 
the parameters. 

We thus find that the (leading order) case I Laurent expansion for q = 1 admits 
12 arbitrary functions without the introduction of any movable critical manifold for the 
specific parametric choices A = 0 or S2 = 3 and PI  = pz. 

One can proceed systematically in an altogether analogous way for the other type of 
Laurent expansions corresponding to the (leading order) cases II and 111 and establish that 
the corresponding Laurent series are also free from movable critical singularity manifolds, 
except that there are only 10 arbitrary functions (due to the presence of resonance values 
-2 and double -1's) in these cases. 

Thus we conclude that in all the three cases I-III the Laurent expansions are free from 
movable critical manifolds, in which the case I expansions contain the full compliment 
of 12 arbitrary functions corresponding to the four coupled third-order partial differential 
equations (2.1) for the parametric restrictions 

( i ) q = l  n = 3  p I = p z  (2.1Ya) 
(ii) q = 1 A =  0 ~ p l  =p2.  (2.1Yb) 

Hence (1.1) with the above two parametric choices satisfy the P-property. 

2.3. Arbitrary functions for the parametric choice q = 0 

From (2.11), for q = 0 we have the resonance values j = -1,  -1,O. 0, 1, 1,3,3.4,4,5,5 in 
the (leading order) case I, with leading order coefficients as noted in table 1. We again look 
for the existence of the Laurent expansion about the singularity manifold as in the previous 
case, step by step. The detailed analysis shows that in order that no movable critical 
manifold is present in the Laurent expansion, one of the following additional constraints on 
the parameters should hold: 

(i) = 3 K+ = K- = 0 (besides q = 0) (2.20a) 
(ii) A = 0 K+ = K - ~ =  0 (besides q = 0). (2.20b) 

Both the above conditions, however. imply that (1.1) becomes decoupled into two 
independent Hirota equations [24] (or their special cases), each of which is obviously 
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integrable. This is in confirmity with the presence of double -1  values in the resonances 
too. 

One can also check that in the leading order cases I1 and UI, again no movable critical 
minifold is introduced for the~above choices (2.19), (2.20). Thus for the above choice of 
parameters the equations (1.1) also satisfy the P-property. 

2.4. Results of the P-analysis 

Combining all the above facts, we can now conclude that the system (1.1) possesses the 
P-property only for four sets of parametric restrictions, among which two appear from the 
parametric choice q = 1 ,  namely (i) S2 = 3 and p, = p~ and (ii) 1 = 0 and = pz. and the 
remaining two are from the parametric choice q = 0, that is, (i) 1;2 = 3 and K+ = K -  = 0 
and (ii) L = 0 and K+ = K -  = 0. The latter two cases, as noted above, correspond to Hirota 
equations only and s q n o  further analysis is needed for them. 

The equations corresponding to the paramehic restrictions !2 = 3 and p l  = p 2  = p 
(say) in the q = 1 case can be written from (1.1) as 

A 
2 

h 

-iE[qDrr + W I ~ ~ I *  + 1q21*)s2t + 3a(q;qlI + q;q2i)q2~’= 0. (2.21b) 
One can easily check that the form of the equation corresponding to the second P-case 
with the parametric choice A = 0, pi = pr and 9 = 1 is again the same as (2.21) with the 
restriction h = 0 and a rescaling of ql and 42.  The integrable model (2.21) includes both the 
most generd h e a r  coupling terms K + ,  K - ,  U+, U- and the higher-order terms systematically 
and its further study is of considerable importance. We also note at this point that a partial 
but incomplete P-analysis has been performed very recently [25] for a system similar to the 
above integrable equations (2.21). but excluding the linear cross coupling terms K + .  K- and 
self-coupling terms U+, U- and without finding the soliton solutions. 

Now, (2.21) can be rewritten in a simplified form by making the linear transformation 
[I71 

(2.22a) 
(2.226) 

iql, + ipql, + -qlir +aA(lqi12 + 1q~I2)q1 + (U+ + u-)qi + (K+ + iK-)q2 

- i ~ [ q ~ ~ ~ ~  + 3a(/q1 I’ + I ~ z I * ) ~ I ~  + 3u(q;ql, + q;q2~)q1~ = o . (2.21~) 

iqh + ipqz + p z t r  + uA(lqi I z +  1q2l2)q2 + (U+ - U-)@+ ( K +  - iK-)qi 
~~ 

q1 = exp(i@p)[q; cos(Q/Z) - q; sin(8/2)] 
q 2  = exp(-i@jZ)[q; cos@/2) + q; sin(8/2)] 

where 

(2.2Zc) 

and subsequently a further transformation 

q{ = exp[i(u+ + u!.)z]q;’ q; = exp[i(u+ - uL)z]g; (2.23) 
where 

d =U: + K :  + K ?  (2.24) 

as (after dropping the primes) 

iql, + pit + ~ A ( l q 1 1 *  + Iq~l*)qi - idqlftt + 3u(/q1 I* + Iq~l*)at 
h 

+3a(q;ql, + q;qZ,)qll = 0 (2 .25~)  
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A hi + p Z r t  + CW~I 1' + l q ~ l ~ ) @  - iE[qZttt + W l q ~ l ~  + 1q2I2)q2, 

+3a(q;qlt + q;42rfq21 = 0. ~ ~ (2.256) 

In the above, the terms proportianal to p have been removed without affecting the other 
terms by introducing the new variables t' = t - pz, and z' = z. For E = 0, the above 
system (2.25) reduces to the well known integrable model proposed by Manakov [26]. 
Recently Kaup and Malomed [27] have pointed out that the Manakov model covers, besides 
the birefringence property, many other physical phenomena such as soliton impping and 
daughter wave ('shadow') formation in optical fibres. The terms proportional to E turn out 
to be important [28,29] as perturbation terms in order to govern some nonlinear short-pulse 
propagation and in such a situation the integrable model (2.25) can assume greater physical 
significance as the integrable generalization of Manakov model. Further when one neglects 
fibre loss [30,31], our model (2.25) can also describe the propagation in the femtosecond 
region. In the next section, we will study the soliton solutions of the system (2.25). 

3. Hirota's bilinearlization and soliton solutions of the integrable c m  equations 

One of the interesting aspects of the P-analysis [18-22] as canied out in the last section is 
that the singular expansion obtained for the solution of the partial differential equation can be 
used to construct the BT and Hirota bilinear form. Here we will consider the system (2.25) 
for this purpose. Now by truncating the Laurent expansion (2.2) with (2.5a), up to the 
constant-level term, and noting that the transformations (2.22)-(2.23) will not affect the 
qualitative form of the Laurent expansion for (2.25), we can formally write the BT as 

q1 = a = a& + al q; = b = bo@-' + bl 
q2 = c = CO@-' f CI q; = d = do@-' + dl (3.1) 

where (a,  b ,  c, d)  and (a1 , bl , CI, dl) satisfy (2.25). In order to derive the Hirota bilinear 
form, we consider the vacuum solutions a1 = bl = CI = dl = 0 in (3.1). Then we have 

91 = I 9; =bo@-' 92 = CO@-] q; =do@- . (3.2) I 

This suggests us to take the Hirota bilinear transformation in the form 

(3.3) 

where g(z, t ) ,  h(z ,  t )  are complex functions and f ( z ,  t )  is a real function. 
Using (3.3) and the Hirota bilinear operators 

D,mD:(g . f) = (a ,  - a,,)"(a, - arryg(z ,  t ) f ( z ' ,  t')izr=z,,n=, (3.4) 
equations (2.25) can be rewritten as 

f2[(iDz + $AD: - isD:)g. f ]  +3ari&fh*D,g. h - [Df f . f - 2ry(gg* + hh')] 

f2[(iDz + +AD: - i&D:)h. f] - 3oli&fg*D,g. h - [D: f . f - ZcY(gg' + hh*)J 
x[($ - 3 i ~ ~ , ) g .  f] = o 

x[($ - 3i&D,)h . f] = 0. 

(3 .5~)  

(3.56) 

3.1. Bright solitons 

Equations (3.5) can be decoupled as 

A1g. f = o  d i h .  f = O  d 2 f .  f =gg"+hh* d 3 g - h = O  (3.6) 
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where the bilinear operators AI, A2 and A3 are defined as 
h 

Az = -D, * d 3 = D c .  (3.7) ) 2(Y 
AI = iD,+-Df-iED: 

( 2  
For finding the soliton solutions, we proceed in the standard way [24,32]. For example, in 
order to find the one-soliton solution, we assume 

g = x g i  h=Xhi  f = l + X Z f z  (3.8) 
where x is an arbitrary parameter. Substituting (3.8) into (3.6) and then collecting the terms 
of similar powers in x, we obtain 

X' : dz(1. f z +  f z .  1) = (glgr+hih;) = O  (3.10) 
x 3 :  Algl.fz=O A t h l . f z = O  (3.11) 
x 4  : A2 f2 .~ f2 =.o. (3.12) 
One can easily check that the solution which is consistent with the system (3.9H3.12) is 

X :  A l g I . l = O  A l h i . 1 = 0  (3.9) 
d3gt .hi = O  

where 

vt = r l [ r  + ~ l ( i $  + EI~)ZI + vio) (3.14) 

and in which l t ,  vio,) and EO are all complex constants in general and the symbol * indicates 
complex conjugate. Using (3.13) into (3.8) and then in (3.3), after absorbing x, the bright 
one-soliton solution can be easily worked out to be 

(3.17) 

and from (3.16). we also have 

In the above the subscripts R and I denote the real and imaginary part. It is obvious from 
(3.17) and (3.18) that cu must be a positive real constant, which naturally corresponds to an 
anomalous region admitting bright solitons. Further the evolution of the intensity profile of 
41 is shown in figure l(u) for the parametric choices J E I ) ~  = 0.3. 1 1 ~  = 1, LIZ = 2, h = 1 
and E = 0.05 (similar form can be drawn for 42 also). The solution (3.15) in which E plays 
a considerable role on the velocity of the soliton reduces to the case of the Manakov model 
while E = 0 and the corresponding changes are obvious from figure l(b). After substituting, 
the bright onesoliton solution (3.15) in the transformations (2.22) and (2.23), we note that 
the resultant solution is in agreement with the result reported from the inverse scattering 
method by Tasgal and Potasek [17]. 
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m 
6 + 

Figure 1. (U) Bright one-soliton intensity profile ly!12 against L and f in the anomalous GYD 
region with & = 0.05 of the integrable model (2.25). (b)  Same [IS in (a) with & = 0. Note the 
broadening of soliton width. 

Next in order to find the bright two-soliton solutions, we can assume 
g = xgi f x3g3 h = Xhi + x3h3 (3.19) 

and proceed as in the case of the one-soliton solution: we obtain a system of bilinear 
equations. On solving them consistently, we obtain 
gl = exp(m) f ~XP(TZ) (3.20a) 

f = 1 f x 2 f z  f x4f4 



(1: - 1y 
a(i", j " )  = 

m[l+ exp(&o +E; ) ]  
(3.22) 

o(i, j ,  k') = n(i, j)a(i. k*)a(j ,  k*) (3.23) 

and 

a(i, j ,  k', 1") = a(i, j )a( i ,  k')a(i, Z*)a(j, k')a(j, 1')u(k*, I * ) .  (3.24) 

Here lj. q:) and 80 are all complex constants. Using (3.20H3.24) into (3.19) and then 

In this way, proceeding further one can generalize the expression for g, h and f 
in (3.3), the two-soliton solutions of (225) are obtained explicitly. 

corresponding to the N-soliton solutions as 

(3.25) 

(3.26) 

(3.27) 

where 
q j  = ~ l j [ t + f j ( i ~ A + & l j ) z l + q ~ )  j = 1.2. .... 2N (3.28) 

q j + ~  = q; (3.29) 

(3.30) exp(4ij) = 

1 j + ~  = $? for j = 1.2, . . . I N 

fori  = 1,2, .. . , N and j = N + 1, .  . . , 2 N  d l  + exp(80 +&;)I 
( h  + 1i)Z 

(1, - lj)Z 
exp(4ij) = for i  = 1,2 ,..., N and j = 1,2, ..., N 

a[ l  + expbo +&;)I 
i = N + 1, ..., 2N and j = N + 1, ..., 2N (3.31) 

and 

(3.32) 

(3.33) 
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1 when XLl P~+N = pi 
0 otherwise. M3(EL) = (3.34) 

3.2. Dark solitons 

Now in order to find the dark solitons, (3.5) can be decoupled into the set of bilinear 
equations as 

where the bilinear operators BI and B2 are defined as 
B ] g .  f = 0 Blh. f = O  h f .  f =gg"+hh* A,g.h=O (3.35) 

(3.36) 

in which r is a constant to be determined. 
For constructing the dark soliton solutions, we assume 

g = go(1 + x g i  + xZg2  + ... ) h = ho(l+ xhi + x2h2 + ... ) 
f = 1 + X f l  + x 2 f 2 +  .. .. (3.37) 

Substituting (3.37) into (3.35) and then collecting the coefficients of xc0). we get 

(3.38) 
r 

&go.  1 = 0 

A set of solutions to (3.38) can easily be written as 

Biho. 1 = 0 gogi + hoht = - 2.2 
&go . ho = 0. 

go = 51 exp(iCi) ho = rzexp(i<i) (3.39) 
where 

cl = K ~ ~ - [ - + ~ A + K ~ ( ~ A . K ~  + E K : - ~ E ~ ) I Z + C { ~ )  (3.40) 
and 71 and r2 are connected by the relation - 

2 2 " q + r2 = - 
2ff 

(3.41) 

in which K1, c,(') and (z1,72) are real constants. 
Using (3.37), (3.39) and the usual Hirota identities [32], equations,(3.35) can be rewritten 

as 
C1G. f = o  C 1 H .  f = O  B 2 f .  f =r$G"+t:HH* 

where 
CI = (iDz + i[3&(K? - r) + KIA.lD, + (3eK1 + ih)D: - ie@} 

H = ( 1  + Xhi + X2hz+...) =O. (3.43) 
Now for obtaining the dark one-soliton solution, we set gj = hj = fj = 0 for j 2 2 and 
then collect the terms with the same power in x .  Then we have 

A3G.H=O (3.42) 

G = ( 1  + x g i  + x2g2+. . . )  

X I  : 
Ci(1  , f i  +gl . l )  = 0 
ad1 . fi + fi 
d 3 ( 1 .  hi +gi . 1) = O  

Clgl . f i  = 0 

C i ( I .  f i  + h i .  1 )  = 0 
= r?(gi +g;)  + g(h1 + h 3  

(3.44) 
x 2  : 

C h  . f i  = 0 4fi . fi = r?gtg; + z:h~h; 
.hi = 0. (3.45) 
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Figure 2. (a) Dark onesoliton intensity profile lql l 2  against z and t in the normal O m  region 
with B = 0.05 in (2.25). (b) Same as in (a) with E = 0. 
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One can easily check that the systems (3.44). (3.45) admit the following solutions. 

where 
gi = hi = Z I  exp(h) f1 = exp(C1) (3.46) 

61 = Pl t  - I[~E(K: - r) + K l w I  - EP; - P ~ ( ~ E K ~  + ; ~ ) [ 4 a ~ ( ~ ;  + .;) - P;]I/Z)~ 

+go’  (3.47) 
and 

(3.48) 

in which PI and are real cons&ts, and the parameter ai is taken as a = -al. The 
expression (3.48) for the complex constant Zl shows that IZiI’ = 1. Since here we have 
assumed f as real, t1 must be real. This assumption is valid only if al = -a in (3.47) 
is greater than zero (that is a i 0) such that 4al(r: + <) > PT and which naturally 
corresponds to the normal CVD region where dark solitons appear. Now using (3.39) and 
(3.46) in (3.37) and then in (3.3), after absorbing x .  the dark one-soliton solution can he 
derived as 

(3.49~) 
(3.49b) 

qi = $TI exp(iCi)[(l+ ZI) - (1 - z1)tanh(C1/2)1 

q z  = frzexp(iSi)[U + Z I )  - ( I  -Zi)tanh(f1/2)1 
where 

(3.50) 
The evolution of the intensity profile of the dark soliton (3.49) is also shown in figure 2 
for the parametric values a = -1, r: = 0.4, KI = PI = 2, r = -4 and A = 1, for (a) 

Next, in order to construct dark two-soliton solutions, we set gj = hj = f;. = 0 for 

(3.51) 

I ’  TI Z + r : = - .  
201 

E = 0.05 and (b) E = 0. 

j 2 3 and then proceeding as before we obtain 

gi = hi = ZI exp(W + ZZ e x p W  f1 = exp(h) + exp(h) 
gz=hz=A1zZ1Zzexp(h +h) f~=Alzexp(& +h) (3.52) 

where 

tj = Pit - {[~E(K? - r) + K ~ A I P ~  - EP,? - P ~ ( ~ E K ]  + $i)[4al(rf + ri) - pj211/2}r 

+q) (3.53) 

(3.54) 

Here Pj and 
dark two-solitons can be found explicitly. 

the following equations in (3.3). 

are all real constants. Using (3.37), (3.39) and (3.51)-(3.55) in (3.3), the 

In this way by proceeding further, the dark N-soliton solutions can be derived using 
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(3.58) 

where 

(3.60) 

4. Discussion 

In this paper, considering a generalized set of CHNLS equations, we have found bright 
and dark N-soliton solutions using the relation between P-analysis and Hirota technique. 
The model system can govern the dynamics of nonlinear short pulses, which includes 
femtosecond soliton pulses when fibre loss is excluded.~ Strictly speaking in the femtosecond 
regime when fibre loss is substantial the contribution of the self-induced Raman effect 
becomes important; however, we have not considered this effect in the present work. The 
nature of soliton solutions reported is in confirmity with the fact that bright solitons occur 
only if a takes a positive value in order to allow the same sign for the dispersion and cubic 
nonlinear coefficients as expected in the anomalous GVD region~and dark solitons appear 
only if a takes a negative value in  order to allow opposite signs for the dispersion and cubic 
nonlinear coefficients as expected in the normal GVD region. 

The bright one-soliton solution agrees exactly with that obtained from the inverse 
scattering method [17] and the remaining higher-order bright solitons and all the dark 
solitons are reported for the first time by taking into account the effects of higher-order 
terms and the most general linear cross coupling terms systematically. We also noted that 
the procedure followed here to find higher-order soliton solutions is not really complicated. 
Further, we expect that the simple form of the reported coupled solitons could be observed 
experimentally in properly tailored optical fibres. It will also be of use to study whether non- 
integrable but partially integrable systems of (1.1) can admit special solutions of interest. 
Work is in progress along these lines. 

Acknowledgments 

RR wishes to thank that the Council of Scientific and Industrial Research (CSIR) for the 
award of Senior Research Fellowship. The work of ML and MD forms part of a research 
project supported by the Department of Atomic Energy, Government of India. 



7314 R Radhakrishnan et a1 

References 

[I] Hasegawa A 1989 Optical Solitons in Fibers (Berlin: Springer) 
[Z] AbdUaev F, D m a n y a n  S and Khabibullaev P 1993 Oplicul Solitms (Berlin: Springer) 
p] Hasegawa A and Tappen F 1973 Appl. Phys. Lett. 23 142 
[4] Hasegawa A and Tappea F 1973 Appl. Phys. Left. 23 171 
[5] Zakharov V E and Shabat A B I972 Sov. Phys.-JETP 34 62 
[6] m a r o v  V E and Shabat A B 1973 Suv. Phys.-JETP 37 923 
[7] Kivshar Y S 1993 IEEE J. Quuntum Elecfr<~n. QE29 250 
[8] Crosignani B and Di Pono P 1981 Opt. Lett. 6 329 
[9] Ueda T and Kalh W L 1990 Phys. Rev. A 42 563 

[lo] Belanger P A and Pare C 1990 Phys. Rev. A 41 5254 
I l l ]  Menyuk C R 1987 Opt. Lett. 12 614 
[12] Wabnifz S, Wright E M and Stegeman G I 1990 Pkys. Rev. A 41 6415 
[I31 Dowling R J 1990 Pkys. Rev. A 42 5553 
[I41 Silberberg Y and Stegeman G I l987Appf. Pkys. Lett. 50 801 
[I51 Trill0 S and Wabnitz S 1991 Opt. Lett. 16 1 
[I61 Dmanyan S A  1992 Opt. C,"un.~BO 301 
[17] Tasgal R S and Potvek M J 1992 1. Murh. Phys. 33 1208 
[I81 Radhakrishnan R and L a k s h m m  M 1995 J. Phys. A: M q h .  Gen. 28 2683 
[IQ] R a m i  A, Grammaticos B and Bountis T 1989 Phys. Rep. 180 159 
PO] Lakshmanan M and Sahadevan R 1993 Phys. Kep. 224 1 
[21] Radhakrishnan R, Sahadevan R and Lakshmanan M 1995 Churn Solitons 
[22] Ganesan S and Lakshman M I987 J. Phys. A: Math. Gen 20 1143 
[23] Kruslwl M D 1982 Private communication 
[24] Hirota R 1973 1. Moth Phy.7. 14 SOS 
[2S] Porsezian K. Shanmugha Sundamn P and Mahalingam A 1994 Phys. Rev. E 50 1543 
[26] Manakov S V 1974 Sov. Phys.-IETP 38 248 
[27] Kaup D J and Maiomed B A 1993 Phys. Rev. A 48 599 
[28] Kodama Y 1985 1. Smt. Phys. 39 597 
[29] Tzoar M and Jain M 1981 Phys. Rev. A 23 1266 
[30] Liu S and Wang W 1994 Phys. Rev. E 49 5726 
[31] Hisakado M and Wadali M 1995 J. Phys. Soc. Jupw 64 408 
[32] Hirota R 1980 Solitom ed R K Bullough and P J Caudrey (Berlin: Springer) p 157 

From0 5 (to appear) 


